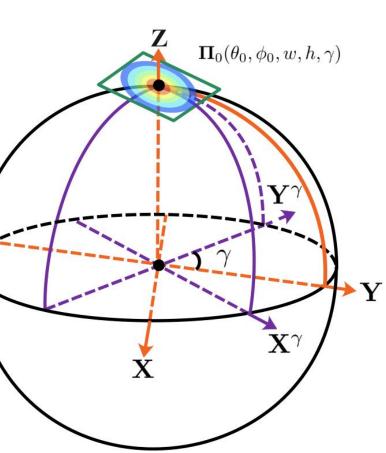
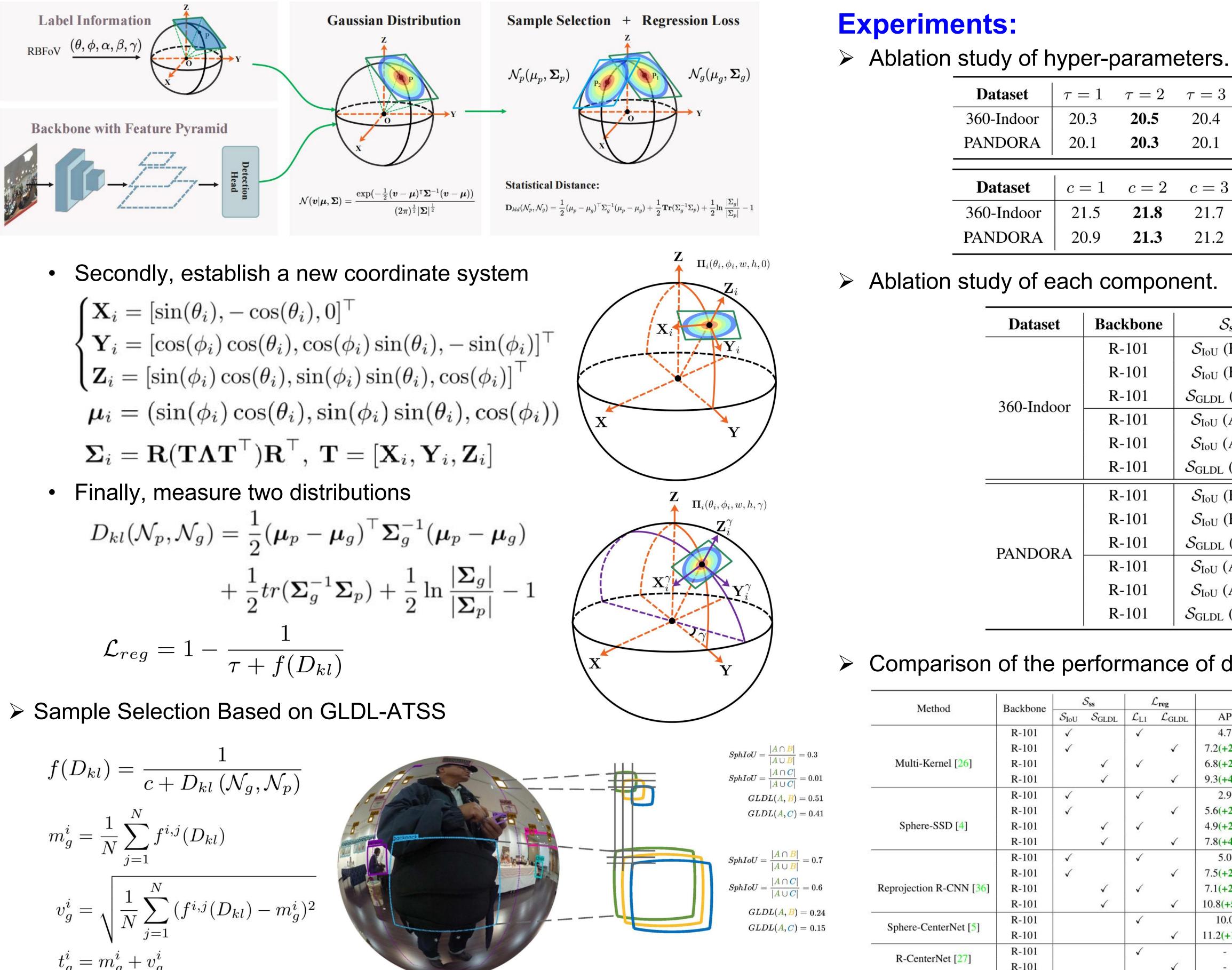


Introduction:

- ➤ Task:
 - Design an easy-to-implement and fully differentiable Joint optimization loss for Spherical Image Object Detection.
- > Challenges:
 - Spherical IoU is not differentiable, making it impossible to use as a loss function for box.
 - Currently, only independently optimized Ln loss can be used in spherical object detection.
- Contributions:
 - We explore a new regression loss function based on Gaussian Label Distribution Learning (GLDL) for spherical object detection task. It achieves a trend-level alignment with SphloU loss and thus naturally improves the model.
 - We align the measurement between sample selection and loss regression based on the GLDL, and then construct new dynamic sample selection strategies (GLDL-ATSS) accordingly. GLDL-ATSS can alleviate the drawback of IoU threshold-based strategy (i.e., scale-sample imbalance).
 - Extensive experimental results on two datasets and popular spherical image detectors show the effectiveness of our approach.


Proposed Method:


- Gaussian Label Distribution Learning
 - Firstly, transform the box in polar region to a Gaussian distribution

$$oldsymbol{\mu}_0 = [\sin(\phi_0)\cos(heta_0),\sin(\phi_0)\sin(heta_0),\cos(\phi_0)]
onumber \ oldsymbol{\Sigma}_0 = \mathbf{R} oldsymbol{\Lambda} \mathbf{R}^ op,$$

$$\mathbf{R} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{\Lambda} = \begin{bmatrix} \frac{w^2}{4} & 0 & 0\\ 0 & \frac{h^2}{4} & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Gaussian Label Distribution Learning for Spherical Image Object Detection Hang Xu^{1,2}, Xinyuan Liu², Qiang Zhao², Yike Ma², Chenggang Yan¹, Feng Dai² ¹Hangzhou Dianzi University ²Institute of Computing Technology, Chinese Academy of Sciences

$$f(D_{kl}) = \frac{1}{c + D_{kl} (\mathcal{N}_g, \mathcal{N}_p)}$$
$$m_g^i = \frac{1}{N} \sum_{j=1}^N f^{i,j}(D_{kl})$$
$$v_g^i = \sqrt{\frac{1}{N} \sum_{j=1}^N (f^{i,j}(D_{kl}) - m_g^i)^2}$$
$$t_g^i = m_g^i + v_g^i$$

- = 1	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	baseline
20.3 20.5		20.4 20.0		19.4	17.6
20 .1 20.3		20.1	20.1 19.9		17.2
c = 1	c = 2	c = 3	c = 4	c = 5	baseline
21.5	21.8	21.7	21.4	21.2	20.1

	Backbone	$\mathcal{S}_{ ext{ss}}$	\mathcal{L}_{reg}	\mathbf{AP}_{50}	
	R-101	\mathcal{S}_{IoU} (Fixed)	\mathcal{L}_{L1}	17.6	
	R-101	$\mathcal{S}_{ ext{IoU}}$ (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	20.7 (+3.1)	
	R-101	$\mathcal{S}_{\mathrm{GLDL}}$ (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	22.8 (+5.2)	
	R-101	\mathcal{S}_{IoU} (ATSS)	\mathcal{L}_{L1}	20.1	
	R-101	$\mathcal{S}_{\mathrm{IoU}}$ (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	22.3 (+2.2)	
	R-101	$\mathcal{S}_{\text{GLDL}}$ (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	25.0 (+4.9)	
	R-101	\mathcal{S}_{IoU} (Fixed)	\mathcal{L}_{L1}	17.2	
	R-101	$\mathcal{S}_{ ext{IoU}}$ (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	21.4 (+ 4.2)	
	R-101	$\mathcal{S}_{\mathrm{GLDL}}$ (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	22.7 (+5.5)	
	R-101	\mathcal{S}_{IoU} (ATSS)	\mathcal{L}_{L1}	19.6	
	R-101	$\mathcal{S}_{\mathrm{IoU}}$ (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	23.4 (+3.8)	
	R-101	$\mathcal{S}_{\text{GLDL}}$ (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	25.2 (+5.6)	

\succ Comparison of the performance of different methods.

S_{ss}		\mathcal{L}_{reg}		360-Indoor		PANDORA			
oU	$\mathcal{S}_{ ext{GLDL}}$	\mathcal{L}_{L1}	$\mathcal{L}_{ ext{GLDL}}$	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅
(~		4.7	11.1	2.8	4.2	10.8	2.2
(\checkmark	7.2(+2.5)	14.2(+4.1)	5.4(+2.4)	7.8(+3.6)	15.6(+4.8)	4.3(+2.1)
	\checkmark	1		6.8(+2.1)	13.9(+2.8)	4.7(+1.9)	6.2(+2.0)	14.5(+3.7)	3.9(+1.7)
	\checkmark		\checkmark	9.3(+4.6)	17.2(+6.1)	6.6(+3.8)	10.2(+6.0)	17.6(+6.8)	6.9(+4.4)
(\checkmark		2.9	7.8	1.4	2.3	7.7	1.5
(\checkmark	5.6(+2.7)	10.8(+3.0)	4.2(+2.8)	5.9(+3.6)	12.3(+4.6)	4.9(+3.4)
	\checkmark	~		4.9(+2.0)	10.2(+2.4)	3.7(+2.3)	4.1(+1.8)	9.8(+2.1)	3.2(+1.7)
	\checkmark		\checkmark	7.8(+4.9)	12.6(+4.8)	5.4(+4.0)	8.0(+5.7)	13.8(+6.1)	6.8(+5.3)
(~		5.0	15.3	1.9	4.2	14.7	1.8
(\checkmark	7.5(+2.5)	18.2(+2.9)	3.8(+1.9)	7.9(+3.7)	18.7(+4.0)	4.5(+2.7)
	\checkmark	~		7.1(+2.1)	17.8(+2.5)	3.2(+1.3)	6.8(+2.6)	17.4(+2.7)	3.0(+1.2)
	\checkmark		\checkmark	10.8(+5.8)	22.5(+7.2)	5.3(+3.4)	11.1(+6.9)	22.8(+8.1)	5.8(+4.0)
		~		10.0	24.8	6.0	-	-	-
			\checkmark	11.2(+1.1)	26.1(+1.3)	7.4(+1.4)	-		-
		~		-	-	-	7.3	22.7	2.6
			\checkmark	-	-	-	8.7(+1.4)	24.3(+1.6)	4.5(+1.9)