Rethinking Boundary Discontinuity Problem for Oriented Object Detection

Hang $X^{1,2 *}$ Xinyuan Liu* Haonan Xu $^{2 *}$ Yike Ma ${ }^{2 *}$ Zunjie Zhu ${ }^{1}$ Chenggang Yan ${ }^{1}$ Feng Dai ${ }^{2 \dagger}$
Hangzhou Dianzi University ${ }^{2}$ Institute of Computing Technology, Chinese Academy of Sciences * Equal contribution ${ }^{\dagger}$ Corresponding author

1 Motivation

1.1 The Root of All Evil is "Box \neq Object"

When objects rotate near the boundary angle, SOTA IoU-like methods (e.g., KFIoU, KLD) actually suffer from severe mutation in angular prediction.

1.2 The Devil is in Encoding Mode

	training phase		inference phase
(a) $I \rightarrow$ detector $\rightarrow \theta_{p} \rightarrow f\left(\theta_{p}\right) \rightarrow \quad \ell-f\left(\theta_{t}\right)-\theta_{t}$	$I \rightarrow$ detector $\rightarrow \theta_{p}$		

$\theta=\arg \min \ell\left(f\left(\theta_{p}\right) ; f\left(\theta_{t}\right)\right) \rightarrow$ model fits discontinuous θ_{p}
(b) $I \rightarrow$ detector $\longrightarrow f_{p} \rightarrow \quad$ l-f $f\left(\theta_{t}\right) \leftarrow \theta_{t}: I \rightarrow \xrightarrow{\text { detector }} \rightarrow f_{p} \xrightarrow{f^{-1}()} \theta_{p}$
$\theta=f^{-1}\left(\underset{f_{p}}{\arg \min } \ell\left(f_{p} ; f\left(\theta_{t}\right)\right)\right) \rightarrow$ model fits continous f_{p}

2 Method
2.1 Dual-Optimization Paradigm

2.2 ACM-Coder

To participate in joint-optimization loss calculation, both f and its inverse f^{-1} must be continuous, differentiable, and reversible. We use the simple yet classic complex-exponentia transformation for reversible transformation

$$
\begin{aligned}
& z=f(\theta)=e^{j \omega \theta}=\cos (\omega \theta)+j \sin (\omega \theta) \\
& \theta=f^{-1}(z)=-\frac{j}{\omega} \ln z=\frac{1}{\omega}\left(\left(\arctan 2\left(z_{i m}, z_{r e}\right)+2 \pi\right) \bmod 2 \pi\right)
\end{aligned}
$$

To determine the appropriate ω, we discuss the relationship of $f_{b o x} \sim f_{o b j}$ as following:

$$
f_{b o x}=e^{i \omega \theta_{b o x}}=e^{i \omega\left(\theta_{b j j} \bmod \pi\right)}= \begin{cases}e^{i \omega \omega_{b j j}}, & \theta_{o b j} \in[0, \pi) \\ e^{i \omega_{o j b}} \cdot e^{-i \omega \pi}, \theta_{o b j} \in[\pi, 2 \pi)\end{cases}
$$

1) When $\omega=1, e^{-i \omega \pi}=-1$, then

2) When $\omega=2, e^{-i \omega \pi}=1$, then

$$
f_{b o x}=e^{i \omega \theta_{b o x} x}=\left\{\begin{array}{l}
e^{i \omega \theta_{\Delta b j}}, \theta_{o b j} \in[0, \pi) \\
e^{i \omega \omega \omega_{a j j}}, \theta_{o b j} \in[\pi, 2 \pi)
\end{array}=f_{o b j}\right.
$$

Deriving the formula reveals: 2) At $\omega=1, f_{b o x}=f_{o b j} \cdot \operatorname{sign}\left(\pi-\theta_{o b j}\right) \neq f_{o b j} ;$ 1) At $\omega=2$, $f_{\text {box }}=f_{\text {obj }}$, aligning with our goals. Thus, we select $\omega=2$ for ACM. It should be noted that when the object is in the shape of a square, $\omega=4$.

2.3 Loss Functions

Given a batch of images, the detector outputs the classification c_{p}, position (x_{p}, y_{p}), scale $\left(w_{p}, h_{p}\right)$, and angular encoding f_{p}, and the corresponding ground truth is $c_{t},\left(x_{t}, y_{t}\right),\left(w_{t}, h_{t}\right)$ and θ_{t}. The total loss is as follows ($\lambda_{\text {bor }}, \lambda_{\text {acm }}$ are coefficients to balance each parts of loss): $\mathcal{L}_{t a l}=\mathcal{L}_{c l s}+\lambda_{b o x} \mathcal{L}_{b o x}+\lambda_{a c m} \mathcal{L}_{a c m}$,
where $\mathrm{L}_{d s}=\ell_{\text {focal }}\left(c_{p}, c_{t}\right), \mathcal{L}_{\text {box }}=\ell\left(B\left(x y w h_{p}, \theta_{p}\right), B\left(x y w h_{t}, \theta_{t}\right)\right), \mathcal{L}_{\text {acm }}=\ell_{\text {smooth_l } 11}\left(f_{p}, f_{t}\right)$

3.1 Comparison with the State-of-the-Art

3.2 Ablation Study

typical loU-like m inction between them lies in their optimization the level, indicating that the primary dis	Hethed	HRSC2016 (Ship)	UCAS-AOD (Car)	UCAS-AOD (Plane)	DOTA-v1.O

 | ACM-KLD | $90.55(+0.54)$ | $87.45(+8.16)$ | $88.76(+1.2)$ | $30.40(+0.41)$ | $90.39(+0.06)$ | $75.65(+46.46)$ | $73.95(+0.54)$ | $42.97(+7.72)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllll}\text { KFIoU } & 88.26 & 62.95 & 85.74 & 24.44 & 90.34 & 16.81 & 71.97 & 26.11\end{array}$

 3.3 Visualized Results

Our ACM greatly eliminates the angular prediction errors in the original KFIoU.

