Rethinking Boundary Discontinuity Problem for Oriented Object Detection

Haonan Xu² Xinyuan Liu^{2*} Hang Xu^{1,2*}

¹ Hangzhou Dianzi University

1 Motivation

1.1 The Root of All Evil is "Box ≠ Object"

When objects rotate near the boundary angle, SOTA IoU-like methods (e.g., KFIoU, KLD) actually suffer from severe mutation in angular prediction.

1.2 The Devil is in Encoding Mode

² Institute of Computing Technology, Chinese Academy of Sciences

Zunjie Zhu¹

* Equal contribution

Chenggang Yan¹

mutation

Yike Ma^2

Object(*angle*)

inference phase

$$\operatorname{cor} \mid - \theta_p$$

tor
$$\rightarrow f_p \xrightarrow{f^{-1}(\cdot)} \theta_p$$

2.1 Dual-Optimization Paradigm

2.2 ACM-Coder

To participate in joint-optimization loss calculation, both f and its inverse f^{-1} must be continuous, differentiable, and reversible. We use the simple yet classic complex-exponential transformation for reversible transformation.

$$z = f(\theta) = e^{j\omega\theta} = \cos(\omega\theta) + j$$
$$\theta = f^{-1}(z) = -\frac{j}{\omega} \ln z = \frac{1}{\omega} ((az))$$

To determine the appropriate ω , we discuss the relationship of $f_{box} \sim f_{obj}$ as following:

1) When
$$\omega = 1$$
, $e^{-i\omega\pi} = -1$, then

$$f_{box} = e^{i\omega\theta_{box}} = \begin{cases} e^{i\omega\theta_{obj}}, \theta_{obj} \in [0,\pi) \\ -e^{i\omega\theta_{obj}}, \theta_{obj} \in [\pi,2\pi) \end{cases} = \begin{cases} f_{obj}, \theta_{obj} \in [0,\pi) \\ -f_{obj}, \theta_{obj} \in [\pi,2\pi) \end{cases} = f_{obj} \cdot \operatorname{sign}(\pi - \theta_{obj})$$

2) When $\omega = 2$, $e^{-i\omega\pi} = 1$, then

$$f_{box} = e^{i\omega\theta_{box}} = \begin{cases} e^{i\omega\theta_{obj}}, \theta_{obj} \in [0,\pi) \\ e^{i\omega\theta_{obj}}, \theta_{obj} \in [\pi,2\pi) \end{cases} = f_{obj}$$

Deriving the formula reveals: 2) At $\omega = 1$, $f_{box} = f_{obj} \cdot \operatorname{sign}(\pi - \theta_{obj}) \neq f_{obj}$; 1) At $\omega = 2$, $f_{box} = f_{obj}$, aligning with our goals. Thus, we select $\omega = 2$ for ACM. It should be noted that when the object is in the shape of a square, $\omega = 4$.

2.3 Loss Functions

Given a batch of images, the detector outputs the classification c_p , position (x_p, y_p) , scale (w_p, h_p) , and angular encoding f_p , and the corresponding ground truth is c_t , (x_t, y_t) , (w_t, h_t) , and θ_t . The total loss is as follows (λ_{box} , λ_{acm} are coefficients to balance each parts of loss): $\mathcal{L}_{tal} = \mathcal{L}_{cls} + \lambda_{box} \mathcal{L}_{box} + \lambda_{acm} \mathcal{L}_{acm},$

where
$$L_{cls} = \ell_{focal}(c_p, c_t), \mathcal{L}_{box} = \ell(B(xywh_p, \theta))$$

[†]Corresponding author

2 Method

 $j\sin(\omega\theta)$

 $\arctan(z_{im}, z_{re}) + 2\pi \mod 2\pi$

 $f_{box} = e^{i\omega\theta_{box}} = e^{i\omega(\theta_{obj} \mod \pi)} = \begin{cases} e^{i\omega\theta_{obj}}, & \theta_{obj} \in [0, \pi], \\ e^{i\omega\theta_{obj}} \cdot e^{-i\omega\pi}, & \theta_{obj} \in [\pi, 2\pi) \end{cases}$ $i\omega\theta_{obj}$

 $(\theta_p), B(xywh_t, \theta_t)), \mathcal{L}_{acm} = \ell_{smooth_l1}(f_p, f_t)$

3.1 Comparison with the State-of-the-Art

Method	MS	PL	BD	BR	GTF	SV	LV	SH	TC	BC	ST	SBF	RA	HA	SP	HC	AP ₅₀
PloU		80.90	69.70	24.10	60.20	38.30	64.40	64.80	90.90	77.20	70.40	46.50	37.10	57.10	61.90	64.00	60.50
Rol-Trans.	\checkmark	88.64	78.52	43.44	75.92	68.81	73.68	83.59	90.74	77.27	81.46	58.39	53.54	62.83	58.93	47.67	69.56
O ² -DNet	\checkmark	89.31	82.14	47.33	61.21	71.32	74.03	78.62	90.76	82.23	81.36	60.93	60.17	58.21	66.98	61.03	71.04
DAL	\checkmark	88.61	79.69	46.27	70.37	65.89	76.10	78.53	90.84	79.98	78.41	58.71	62.02	69.23	71.32	60.65	71.78
P-RSDet	\checkmark	88.58	77.83	50.44	69.29	71.10	75.79	78.66	90.88	80.10	81.71	57.92	63.03	66.30	69.77	63.13	72.30
BBAVectors	\checkmark	88.35	79.96	50.69	62.18	78.43	78.98	87.94	90.85	83.58	84.35	54.13	60.24	65.22	64.28	55.70	72.32
DRN	\checkmark	89.71	82.34	47.22	64.10	76.22	74.43	85.84	90.57	86.18	84.89	57.65	61.93	69.30	69.63	58.48	73.23
CFC-Net	\checkmark	89.08	80.41	52.41	70.02	76.28	78.11	87.21	90.89	84.47	85.64	60.51	61.52	67.82	68.02	50.09	73.50
Gliding Vertex		89.64	85.00	52.26	77.34	73.01	73.14	86.82	90.74	79.02	86.81	59.55	70.91	72.94	70.86	57.32	75.02
Mask OBB	\checkmark	89.56	85.95	54.21	72.90	76.52	74.16	85.63	89.85	83.81	86.48	54.89	69.64	73.94	69.06	63.32	75.33
CenterMap	\checkmark	89.83	84.41	54.60	70.25	77.66	78.32	87.19	90.66	84.89	85.27	56.46	69.23	74.13	71.56	66.06	76.03
CSL	\checkmark	90.25	85.53	54.64	75.31	70.44	73.51	77.62	90.84	86.15	86.69	69.60	68.04	73.83	71.10	68.93	76.17
R ³ Det	\checkmark	89.80	83.77	48.11	66.77	78.76	83.27	87.84	90.82	85.38	85.51	65.67	62.68	67.53	78.56	72.62	76.47
GWD	\checkmark	86.96	83.88	54.36	77.53	74.41	68.48	80.34	86.62	83.41	85.55	73.47	67.77	72.57	75.76	73.40	76.30
SCRDet++	\checkmark	90.05	84.39	55.44	73.99	77.54	71.11	86.05	90.67	87.32	87.08	69.62	68.90	73.74	71.29	65.08	76.81
KFIoU	\checkmark	89.46	85.72	54.94	80.37	77.16	69.23	80.90	90.79	87.79	86.13	73.32	68.11	75.23	71.61	69.49	77.35
DCL	\checkmark	89.26	83.60	53.54	72.76	79.04	82.56	87.31	90.67	86.59	86.98	67.49	66.88	73.29	70.56	69.99	77.37
RIDet	\checkmark	89.31	80.77	54.07	76.38	79.81	81.99	89.13	90.72	83.58	87.22	64.42	67.56	78.08	79.17	62.07	77.62
PSC	\checkmark	89.86	86.02	54.94	62.02	81.90	85.48	88.39	90.73	86.90	88.82	63.94	69.19	76.84	82.75	63.24	78.07
KLD	\checkmark	88.91	85.23	53.64	81.23	78.20	76.99	84.58	89.50	86.84	86.38	71.69	68.06	75.95	72.23	75.42	78.32
CenterNet-ACM	\checkmark	89.84	85.50	53.84	74.78	80.77	82.81	88.92	90.82	87.18	86.53	64.09	66.27	77.51	79.62	69.57	78.53
Rol-TransACM	\checkmark	85.55	80.53	61.21	75.40	80.35	85.60	88.32	89.88	87.13	87.10	68.15	67.94	78.75	79.82	75.96	79.45

3.2 Ablation Study

Typical IoU-like methods are improved to the same level, indicating that the primary distinction between them lies in their optimization capabilities for the angular boundary.

Method	HRSC20)16 (Ship)	UCAS-A	OD (Car)	UCAS-AC	OD (Plane)	DOTA-v1.0		
	AP ₅₀	AP_{75}	AP ₅₀	AP_{75}	AP ₅₀	AP_{75}	AP_{50}	AP_{75}	
GWD	84.94	61.87	87.25	28.46	90.34	38.22	73.12	34.98	
ACM-GWD	90.63 (+5.69)	86.71 (+24.84)	88.69 (+1.44)	29.15 (+0.69)	90.35 (+0.01)	76.00 (+37.78)	73.71 (+0.59)	41.97 (+6.99)	
KLD	90.01	79.29	87.54	29.99	90.33	29.19	73.41	35.25	
ACM-KLD	90.55 (+0.54)	87.45 (+8.16)	88.76 (+1.22)	30.40 (+0.41)	90.39 (+0.06)	75.65 (+46.46)	73.95 (+0.54)	42.97 (+7.72)	
KFIoU	88.26	62.95	85.74	24.44	90.34	16.81	71.97	26.11	
ACM-KFIoU	90.55 (+2.29)	87.77 (+24.82)	88.31 (+2.57)	34.81 (+10.37)	90.40 (+0.06)	74.48 (+57.67)	74.51 (+2.54)	40.49 (+14.38)	
SkewloU	89.39	76.43	87.73	27.59	90.34	63.64	73.62	38.01	
ACM-SkewloU	90.47 (+1.08)	88.33 (+11.09)	88.27 (+0.54)	29.13 (+1.74)	90.37 (+0.03)	75.13 (+11.49)	74.21 (+0.59)	42.83 (+4.37)	

3.3 Visualized Results

3 Experiment

Our ACM greatly eliminates the angular prediction errors in the original KFIoU.