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1 Motivation

1.1 The Root of All Evil is “Box ≠ Object”

ters, achieving rotational equivariance for detection.
• Extensive experiments on multiple datasets show that

boundary discontinuity problem is well-addressed. More-
over, typical IoU-like methods are improved to the same
level without obvious performance gap.

2. Related Works
2.1. Rotated Object Detection

In oriented detection, the minimal enclosing rotated bound-
ing box (x, y, w, h, θ) is adopted widely to represent an ori-
ented object, where (x, y) is center position, (w, h) is scale
(i.e., width & height) and θ is rotated angle of box. There
are many algorithms inherited from classic horizontal de-
tection [5, 11, 12, 20] to predict the rotated boxes, where
ROI-Transformer [3], SCRDet [32], ReDet [7] are two-stage
mainstreamed methods, while DRN [19], R3Det [34], S2A-
Net [6] are single-stage methods. However, these detectors
suffer from boundary discontinuity problems in varying de-
grees, as the issue itself is unrelated to the detectors.

2.2. Boundary Discontinuity Problem

The boundary discontinuity problem has been a persis-
tent challenge, requiring a comprehensive understanding
of the antecedents and consequences of each milestone
to grasp the essence of this paper. In horizontal detec-
tion, bbox-regression loss typically employs joint-optim
IoU-Loss, which has reached a consensus without contro-
versy. Due to the complexity and non-differentiability of
IoU calculation for rotated box, it was initially considered
that IoU-Loss can not be available for oriented detection.
Therefore, early methods in oriented detection usually used
L1-Loss for each parameters (x, y, w, h, θ).

CSL [31] pointed out that using L1-Loss would lead to
sharp increases in angle-regression loss at angle bound-
aries, termed "boundary discontinuity problem". By
using angle classification instead of angle regression, CSL
avoids the intractable problem. Subsequently, a series of
methods (e.g., DCL [33] / GF-CSL [25] / MGAR [22])
based on angle classification have sprung up.

GWD [35] argued that while CSL solved the "boundary
discontinuity problem" caused by sharp loss increases, inde-
pendently optimizing parameters was unreasonable. This is
because IoU-Loss was already established as the best choice
in horizontal detection. However, since rotated IoU is non-
differentiable, GWD proposed a Gaussian-based joint-optim
loss to approximately replace it. Hence, GWD claimed
that it can address the "boundary discontinuity problem" and
achieve joint optimization. KLD [36] and KFIoU [38] inherit
the advantages of GWD’s Gaussian encoding, and improve
it from distribution measurement. Due to the remarkable
effect of these methods, more and more Gaussian methods
have emerged, which indicates that joint-optim methods
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Figure 3. Box ̸= Object: (a) objects rotated with 45◦ and
225◦[colorful mark] share the same box rotated with 45◦ [black
mark], which causes (b) the relationship [blue line] between angle
of box and object to become a piecewise function with a breakpoint
[gray region], differing from the (position, scale). Not only is the
prediction [red line] of the breakpoint region mutational, but the
prediction of other regions also becomes fluctuant.

have become mainstream. Notably, the perception of the
"boundary discontinuity problem" remained limited to
sharp loss increases up to this point.

Recently, PSC [41] borrows phase-shift-coding from the
field of communications to improve the performance of angle
prediction. It uses continuous coding to avoid quantization
errors in classification methods, but it still belongs to in-
dependent optimization. Notably, PSC focuses on coding
design without new insight about boundary discontinu-
ity problem (e.g., it explicitly mentioned that GWD/KLD
solved the boundary problem).

3. Preliminary
3.1. The Root of All Evil is "Box ̸= Object"

For an oriented object detector, it accepts image of object
as input, and outputs bounding box with position, scale
and angle parameters. However, we reveal that box and
object are essentially different concepts, which will produce
breakpoints in the angular ground-truth. The discontinuous
ground-truth cannot be fitted exactly by continuous output
of the detector especially at the breakpoints, so angular pre-
diction near the breakpoints becomes very unstable.

In the interest of brevity, we denote the object instance
and bounding box as O(xobj , yobj , wobj , hobj , θobj) and
B(xbox, ybox, wbox, hbox, θbox), respectively. The difference
between O and B lies in θ rather than (x, y) and (w, h),
where the range of θobj is [0, 2π) while the range of θbox is
[0, π). This is because the object holds content which needs
to rotate at least one full circle to be completely overlapped,
while the box is a kind of geometry without any content
which just needs to rotate half of circle to be completely
overlapped. For example in Fig. 3a, objects rotated with
45◦ and 225◦ can be distinguished by content, while the
corresponding bounding boxes cannot as well.

In this setting, the bounding box is a truly symmetric

When objects rotate near the boundary angle, SOTA IoU‐like methods (e.g., KFIoU, KLD)
actually suffer from severe mutation in angular prediction.
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2 Method
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2.2 ACM‐Coder
To participate in joint‐optimization loss calculation, both f and its inverse f−1 must be con‐
tinuous, differentiable, and reversible. We use the simple yet classic complex‐exponential
transformation for reversible transformation.

z = f (θ) = ejωθ = cos(ωθ) + j sin(ωθ)

θ = f−1(z) = −j

ω
ln z = 1

ω
((arctan2(zim, zre) + 2π) mod 2π)

To determine the appropriate ω, we discuss the relationship of fbox ∼ fobj as following:

fbox = eiωθbox = eiω(θobj mod π) =

{
eiωθobj, θobj ∈ [0, π)
eiωθobj · e−iωπ, θobj ∈ [π, 2π)

1) When ω = 1, e−iωπ = −1, then

fbox = eiωθbox =

{
eiωθobj, θobj ∈ [0, π)

− eiωθobj, θobj ∈ [π, 2π) =
{

fobj, θobj ∈ [0, π)
− fobj, θobj ∈ [π, 2π) = fobj · sign(π − θobj)

2) When ω = 2, e−iωπ = 1, then

fbox = eiωθbox =

{
eiωθobj, θobj ∈ [0, π)
eiωθobj, θobj ∈ [π, 2π) = fobj

Deriving the formula reveals: 2) At ω = 1, fbox = fobj · sign(π − θobj) ̸= fobj; 1) At ω = 2,
fbox = fobj, aligning with our goals. Thus, we select ω = 2 for ACM. It should be noted that
when the object is in the shape of a square, ω = 4.

2.3 Loss Functions
Given a batch of images, the detector outputs the classification cp, position (xp, yp), scale
(wp, hp), and angular encoding fp, and the corresponding ground truth is ct, (xt, yt), (wt, ht),
and θt. The total loss is as follows (λbox, λacm are coefficients to balance each parts of loss):

Ltal = Lcls + λboxLbox + λacmLacm,

where Lcls = ℓfocal

(
cp, ct

)
, Lbox = ℓ

(
B(xywhp, θp), B(xywht, θt)

)
, Lacm = ℓsmooth_l1

(
fp, ft

)

3 Experiment

3.1 Comparison with the State‐of‐the‐Art
Method MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50

PIoU 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50
RoI‐Trans. ✓ 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
O2‐DNet ✓ 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DAL ✓ 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78

P‐RSDet ✓ 88.58 77.83 50.44 69.29 71.10 75.79 78.66 90.88 80.10 81.71 57.92 63.03 66.30 69.77 63.13 72.30
BBAVectors ✓ 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32

DRN ✓ 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
CFC‐Net ✓ 89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50

Gliding Vertex 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
Mask OBB ✓ 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
CenterMap ✓ 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

CSL ✓ 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
R3Det ✓ 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
GWD ✓ 86.96 83.88 54.36 77.53 74.41 68.48 80.34 86.62 83.41 85.55 73.47 67.77 72.57 75.76 73.40 76.30

SCRDet++ ✓ 90.05 84.39 55.44 73.99 77.54 71.11 86.05 90.67 87.32 87.08 69.62 68.90 73.74 71.29 65.08 76.81
KFIoU ✓ 89.46 85.72 54.94 80.37 77.16 69.23 80.90 90.79 87.79 86.13 73.32 68.11 75.23 71.61 69.49 77.35
DCL ✓ 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37
RIDet ✓ 89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62
PSC ✓ 89.86 86.02 54.94 62.02 81.90 85.48 88.39 90.73 86.90 88.82 63.94 69.19 76.84 82.75 63.24 78.07
KLD ✓ 88.91 85.23 53.64 81.23 78.20 76.99 84.58 89.50 86.84 86.38 71.69 68.06 75.95 72.23 75.42 78.32

CenterNet‐ACM ✓ 89.84 85.50 53.84 74.78 80.77 82.81 88.92 90.82 87.18 86.53 64.09 66.27 77.51 79.62 69.57 78.53
RoI‐Trans.‐ACM ✓ 85.55 80.53 61.21 75.40 80.35 85.60 88.32 89.88 87.13 87.10 68.15 67.94 78.75 79.82 75.96 79.45

3.2 Ablation Study
Typical IoU‐like methods are improved to the same level, indicating that the primary dis‐
tinction between them lies in their optimization capabilities for the angular boundary.

Method HRSC2016 (Ship) UCAS‐AOD (Car) UCAS‐AOD (Plane) DOTA‐v1.0
AP50 AP75 AP50 AP75 AP50 AP75 AP50 AP75

GWD 84.94 61.87 87.25 28.46 90.34 38.22 73.12 34.98
ACM‐GWD 90.63 (+5.69) 86.71 (+24.84) 88.69 (+1.44) 29.15 (+0.69) 90.35 (+0.01) 76.00 (+37.78) 73.71 (+0.59) 41.97 (+6.99)

KLD 90.01 79.29 87.54 29.99 90.33 29.19 73.41 35.25
ACM‐KLD 90.55 (+0.54) 87.45 (+8.16) 88.76 (+1.22) 30.40 (+0.41) 90.39 (+0.06) 75.65 (+46.46) 73.95 (+0.54) 42.97 (+7.72)

KFIoU 88.26 62.95 85.74 24.44 90.34 16.81 71.97 26.11
ACM‐KFIoU 90.55 (+2.29) 87.77 (+24.82) 88.31 (+2.57) 34.81 (+10.37) 90.40 (+0.06) 74.48 (+57.67) 74.51 (+2.54) 40.49 (+14.38)

SkewIoU 89.39 76.43 87.73 27.59 90.34 63.64 73.62 38.01
ACM‐SkewIoU 90.47 (+1.08) 88.33 (+11.09) 88.27 (+0.54) 29.13 (+1.74) 90.37 (+0.03) 75.13 (+11.49) 74.21 (+0.59) 42.83 (+4.37)

3.3 Visualized Results
Our ACM greatly eliminates the angular prediction errors in the original KFIoU.


