

Github Codes

Wed 23 August 11:45-12:45 (5 / 6) **# 952**

Introduction

> Task

 detect (locate+classfy) objects on panoramic / spherical images. > Application

• environment perception for robotics and automatic driving.

Focus point

• IoU calculation and loss design for spherical bounding boxes.

> Challenges

- It's hard to balance differnetiablity, accuary and speed in spherical IoU calculation.
- It's hard to design better spherical loss functions beyond naive L1-Loss.

Contributions

- convert spherical boxes into planar oriented boxes in pairs, named as Sph2Pob.
- implement a differentiable, fast, accurate spherical IoU based on Sph2Pob.
- implement a flexible and extensible spherical loss functions based on Sph2Pob.

Prerequisites

> Spherical Images

- Spherical image is a natural extend (360° view) of comon planar image.
- Spherical image has two display mode, i.e., sphere and ERP.

Sphere

Equal Rectangular Projection (ERP)

> Spherical Boxes

- Spherical bounding box is defined as $(\theta, \phi, \alpha, \beta, \gamma)$.
- $n(\theta, \phi)$ is the tangent point of the sphere and rectangular tangent plane.
- α and β are the horizontal and vertical fields of view of the spherical bounding box.
- γ is rotated angle around center-axis $p(\theta, \phi)$.
- Apart from γ , another rotated angle Δ coupled with box-pair exists on sphere. [our insight]
- call γ as *external angle*, while Δ as *internal angle*.

Welcome to communicate with me through Email ! liuxinyuan21s@ict.ac.cn fdai@ict.ac.cn

Sph2Pob: Boosting Object Detection on Spherical Images with Planar Oriented Boxes Methods

Xinyuan Liu^{1,2}, Hang Xu³, Bin Chen^{1,2}, Qiang Zhao¹, Yike Ma¹, Chenggang Yan³, Feng Dai^{1*} ¹Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³Hangzhou Dianzi University

Methodology

> Overview

Comparsion

	Exact Method	Approxim	ate N
Method	Unbiased-IoU	Grand Grand Sph-lo2U	
differentiablity	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	****	
speed	$\bigstar \And \And \And \bigstar$	****	
accuracy	****	$\bigstar \stackrel{\bullet}{\leftrightarrow} \stackrel{\bullet}{\leftrightarrow} \stackrel{\bullet}{\leftrightarrow} \stackrel{\bullet}{\leftrightarrow}$	

> Mathematical Details

★ IOU & Loss ★ $IoU^{\mathcal{S}}(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}}) \approx IoU^{\mathcal{P}}(Sph2Pob(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}}))$ $Loss^{\mathcal{S}}(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}}) \approx Loss^{\mathcal{P}}(Sph2Pob(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}}))$

external angle internal angle

(c) ERP of Spherical Boxes Geometric ansformatio Planar Oriented Boxes Methods ↓ Loss ≈ || □ - □ ||

3. Transform position and pose.

 $\hat{oldsymbol{n}}(\hat{ heta},\hat{\phi})=oldsymbol{R}\,oldsymbol{n}(heta,\phi) \qquad [oldsymbol{\hat{p}}_1,oldsymbol{\hat{p}}_2]=oldsymbol{R}\,[oldsymbol{p}_1,oldsymbol{p}_2]$ 4. Compute Internal Angle. $\Delta = \Delta_1 + \Delta_2 = \arccos(\hat{\boldsymbol{p}}_1 \cdot \hat{\boldsymbol{p}}_{ref}) + \arccos(\hat{\boldsymbol{p}}_2 \cdot \hat{\boldsymbol{p}}_{ref})$ 5. Map spherical boxes to planar boxes. $\mathcal{B}_i^\mathcal{P} = (x_i, y_i, w_i, h_i, a_i) = (\hat{ heta}_i, \hat{\phi}_i, \hat{lpha}_i, \hat{eta}_i, \hat{eta}_i)$ $a_i = \Delta_i + \gamma_i, i = 1, 2$ **IoU** ≈ **□**+**□**-**□ Boxes** Methods $introdus \\ Loss \approx \|\Box - \Box\|$

> Evaluations

Evaluation on different Loss.

Loss		360-Indo	or	PANDORA		
LOSS	AP↑	AP_{50} \uparrow	AP ₇₅ ↑	AP↑	AP_{50} \uparrow	AP ₇₅ ↑
L1	10.2	23.0	7.8	10.3	24.3	6.6
L1 [†]	9.9	21.9	7.7	10.1	23.7	6.8
GWD [†] [Yang et al., 2021b]	6.8	14.5	5.6	5.9	12.3	5.0
KLD [†] [Yang et al., 2021c]	9.5	21.5	6.8	10.3	23.5	7.1
KFIoU [†] [Yang <i>et al.</i> , 2022b]	8.5	19.7	6.2	9.6	23.2	5.6
IoU [†] [Yu et al., 2016]	9.8	22.1	6.8	10.4	24.8	6.9
GIoU [†] [Rezatofighi et al., 2019]	10.5	23.9	7.8	10.3	24.7	6.8
DIoU [†] [Zheng et al., 2020]	11.0	24.6	8.2	10.4	24.8	7.0
CIoU [†] [Zheng et al., 2021]	11.5	25.7	8.2	10.5	25.3	7.0

360-Indoor

Meth

***** Experiments *****

• Comprehensive comparison of box transform methods.

Iethod	Consistency			Time-cost		Detection		
	\mathbf{R}_{all}	$\mathbf{R}_{low}\uparrow$	\mathbf{R}_{high}	$\mathbf{T}_{cpu}\downarrow$	$\mathbf{T}_{cuda} \downarrow$	AP↑	AP_{50} \uparrow	AP ₇₅ ↑
Sph	0.7819	0.9922	0.4274	0.0364	0.0033	10.7	24.3	7.8
Fov	0.9600	0.9974	0.8860	0.0372	0.0034	10.9	25.0	7.9
ph2Pob	0.9989	0.9990	0.9988	2.2275	0.0096	11.5	25.7	8.2
nbiased	1 0000	1 0000	1 0000	46 4417	_	_	2	_

Ablation studies about edge & angle calculation.

Edge	Error (mean±std)	R↑	Angle	Error↓(mean±std)	R↑
arc chord tangent	$\begin{array}{c} 0.0016 {\pm} 0.0042 \\ 0.0023 {\pm} 0.0063 \\ 0.0086 {\pm} 0.0192 \end{array}$	0.9989 0.9974 0.9681	original equator project	$\begin{array}{c} 0.0025 {\pm} 0.0086 \\ 0.0016 {\pm} 0.0042 \\ 0.0017 {\pm} 0.0043 \end{array}$	0.9946 0.9989 0.9987

• Evaluation on different detectors.

Detector	Loss	360-Indoor			PANDORA		
Detector		AP↑	AP_{50} \uparrow	AP_{75} \uparrow	AP↑	AP_{50} \uparrow	AP ₇₅ ↑
Faster R-CNN	L1	12.5	28.1	9.1	11.0	27.8	6.2
	CIoU [†]	12.9	29.1	9.4	11.3	28.6	7.1
SSD	L1	10.8	27.6	6.3	9.5	25.8	4.6
		12.0	28.7	8.0	10.5	26.9	6.0
FCOS	L1	8.8	20.2	6.7	7.7	19.7	4.4
	CIoU [†]	9.2	21.0	7.0	8.8	21.2	5.6

Visualization

PANDORA

