

Sph2Pob: Boosting Object Detection on Spherical Images with Planar Oriented Boxes Methods

Xinyuan Liu^{1,2}, Hang Xu³, Bin Chen^{1,2}, Qiang Zhao¹, Yike Ma¹, Chenggang Yan³, Feng Dai^{1*}

¹Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China ²University of Chinese Academy of Sciences, Beijing, China ³Hangzhou Dianzi University, Hangzhou, China

Macao, S.A.R. August 19-25, 2023.

➤ Topic

- Task: detect (locate+classfy) objects on panoramic / spherical images.
- Application: environment perception for robotics and automatic driving.
- Focus point: IoU calculation and loss design for spherical bounding boxes.

Challenges

- It's hard to balance differnetiablity, accuracy and speed in spherical IoU calculation.
- It's hard to design better spherical loss functions beyond naive L1-Loss.

Contributions

- convert spherical boxes into planar oriented boxes in pairs, named as Sph2Pob.
- implement a differentiable, fast, accurate spherical IoU based on Sph2Pob.
- implement flexible and extensible spherical loss functions based on Sph2Pob.

- Spherical/Panoramic image is a natural extend of comon planar image.
- \bullet It has the whole 360 $^\circ\,$ view with richer information and higher practice value.
- Spherical image has two display mode, i.e., sphere and ERP.

Equal Rectangular Projection (ERP)

Sphere

Ζſ

- Spherical bounding box is defined as $(\theta, \phi, \alpha, \beta, \gamma)$.
- $p(\theta, \phi)$ is the tangent point of the sphere and rectangular tangent plane. *(similar to center)*
- α and β are the horizontal and vertical fields of view of the spherical bounding box. *(similar to width/height)*
- γ is rotated angle around center-axis $n(\theta, \phi)$.
- Apart from γ , another rotated angle Δ coupled with box-pair exists on sphere. **[our insight]**
- we call γ as external angle, while Δ as internal angle.

external angle

internal angle

Overlap(IoU) Calculation

Sph-IoU

FoV-loU

- Try to move boxes to the equator, which is the line with no distortion on ERP-images.
- × Fail to ensure the boxes after moving on the equator.
- × Ignore the internal angle, so relative poses change.

- \checkmark Continue to move boxes to the equator.
- $\checkmark\,$ Ensure the boxes on the equator.
- $\checkmark\,$ Preserve the internal angle and relative pose.

- Spherical Geometric Transformation can move boxes without any infoloss.
- Spherical-Planar Mapping is also used to calculate more general loss beyond IoU.

1. Compute position and pose.

$$\boldsymbol{n} = \boldsymbol{n}(\theta, \phi) = [nx, ny, nz]^{\top}$$
$$= [\sin(\phi) \cos(\theta), \sin(\phi) \sin(\theta), \cos(\phi)]^{\top}$$
$$\boldsymbol{p} = \boldsymbol{p}(\theta, \phi) = \frac{\partial \boldsymbol{n}(\theta, \phi)}{\partial \phi} = [px, py, pz]^{\top}$$
$$= [\cos(\phi) \cos(\theta), \cos(\phi) \sin(\theta), -\sin(\phi)]^{\top}$$

2. Construct spherical transformation.

$$m{R} = \left[m{v}_x, m{v}_y, m{v}_z
ight]^ op = \left[rac{m{n}_1 + m{n}_2}{\|m{n}_1 + m{n}_2\|}, rac{m{n}_1 - m{n}_2}{\|m{n}_1 - m{n}_2\|}, m{v}_x imes m{v}_y
ight]$$

3. Transform position and pose.

 $\hat{\boldsymbol{n}}(\hat{ heta},\hat{\phi}) = \boldsymbol{R} \, \boldsymbol{n}(heta,\phi) \qquad [\hat{\boldsymbol{p}}_1,\hat{\boldsymbol{p}}_2] = \boldsymbol{R} \, [\boldsymbol{p}_1,\boldsymbol{p}_2]$

4. Compute Internal Angle.

$$\Delta = \Delta_1 + \Delta_2 = \arccos(\hat{\boldsymbol{p}}_1 \cdot \hat{\boldsymbol{p}}_{ref}) + \arccos(\hat{\boldsymbol{p}}_2 \cdot \hat{\boldsymbol{p}}_{ref})$$

5. Map spherical boxes to planar boxes.

$$\mathcal{B}_{i}^{\mathcal{P}} = (x_{i}, y_{i}, w_{i}, h_{i}, a_{i}) = (\hat{\theta}_{i}, \hat{\phi}_{i}, \hat{\alpha}_{i}, \hat{\beta}_{i}, \hat{\Delta}_{i})$$
$$a_{i} = \Delta_{i} + \gamma_{i}, i = 1, 2$$

 $\bigstar \text{ IoU \& Loss } \bigstar \quad IoU^{\mathcal{S}}(\boldsymbol{B}_{1}^{\mathcal{S}}, \boldsymbol{B}_{2}^{\mathcal{S}}) \approx IoU^{\mathcal{P}}(Sph2Pob(\boldsymbol{B}_{1}^{\mathcal{S}}, \boldsymbol{B}_{2}^{\mathcal{S}})) \quad Loss^{\mathcal{S}}(\boldsymbol{B}_{1}^{\mathcal{S}}, \boldsymbol{B}_{2}^{\mathcal{S}}) \approx Loss^{\mathcal{P}}(Sph2Pob(\boldsymbol{B}_{1}^{\mathcal{S}}, \boldsymbol{B}_{2}^{\mathcal{S}}))$

• Scatter of different IoU.

• Comprehensive comparison of box transform methods.

Method	Consistency			Time	e-cost	Detection		
	\mathbf{R}_{all}	$\mathbf{R}_{low}\uparrow$	\mathbf{R}_{high}	$\mathbf{T}_{cpu}\downarrow$	$\mathbf{T}_{cuda} \downarrow$	AP↑	AP_{50} \uparrow	AP ₇₅ ↑
Sph	0.7819	0.9922	0.4274	0.0364	0.0033	10.7	24.3	7.8
Fov	0.9600	0.9974	0.8860	0.0372	0.0034	10.9	25.0	7.9
Sph2Pob	0.9989	0.9990	0.9988	2.2275	0.0096	11.5	25.7	8.2
Unbiased	1.0000	1.0000	1.0000	46.4417	-	_	-	-

• Ablation studies about edge & angle calculation.

Edge	Error \downarrow (mean \pm std)	R↑	Angle	$ $ Error \downarrow (mean \pm std)	R↑
arc chord tangent	$\begin{array}{c} 0.0016 {\pm} 0.0042 \\ 0.0023 {\pm} 0.0063 \\ 0.0086 {\pm} 0.0192 \end{array}$	0.9989 0.9974 0.9681	original equator project		0.9946 0.9989 0.9987

• Evaluation on different Loss.

Loss	360-Indoor				PANDORA		
Loss	AP↑	AP_{50} \uparrow	AP_{75} \uparrow	AP↑	AP ₅₀ ↑	AP ₇₅ ↑	
L1	10.2	23.0	7.8	10.3	24.3	6.6	
L1 [†]	9.9	21.9	7.7	10.1	23.7	6.8	
GWD [†] [Yang et al., 2021b]	6.8	14.5	5.6	5.9	12.3	5.0	
KLD [†] [Yang <i>et al.</i> , 2021c]	9.5	21.5	6.8	10.3	23.5	7.1	
KFIoU [†] [Yang et al., 2022b]	8.5	19.7	6.2	9.6	23.2	5.6	
IoU [†] [Yu <i>et al.</i> , 2016]	9.8	22.1	6.8	10.4	24.8	6.9	
GIoU [†] [Rezatofighi et al., 2019]	10.5	23.9	7.8	10.3	24.7	6.8	
$DIoU^{\dagger}$ [Zheng et al., 2020]	11.0	24.6	8.2	10.4	24.8	7.0	
CIoU [†] [Zheng <i>et al.</i> , 2021]	11.5	25.7	8.2	10.5	25.3	7.0	

• Evaluation on different detectors.

Detector	Loss		360-Indo	or	PANDORA			
Detector		AP ↑	AP ₅₀ ↑	AP_{75} \uparrow	AP ↑	AP ₅₀ ↑	AP ₇₅ ↑	
Faster R-CNN	L1	12.5	28.1	9.1	11.0	27.8	6.2	
I aster K-CIVIV	CIoU [†]	12.9	29.1	9.4	11.3	28.6	7.1	
SSD	L1	10.8	27.6	6.3	9.5	25.8	4.6	
330	CIoU [†]	12.0	28.7	8.0	10.5	26.9	6.0	
FCOS	L1	8.8	20.2	6.7	7.7	19.7	4.4	
1005	CIoU [†]	9.2	21.0	7.0	8.8	21.2	5.6	

• Evaluation on different components, including Lable Assignment, Loss, NMS.

Label	Loss	NMS	360-Indoor			PANDORA		
Assignment			AP↑	AP ₅₀ ↑	AP ₇₅ ↑	AP↑	AP ₅₀ ↑	AP ₇₅ ↑
			9.8	22.2	7.0	10.4	23.8	6.9
\checkmark			10.2	23.0	7.8	10.3	24.3	6.6
	\checkmark		11.0	25.4	7.8	10.6	24.5	6.9
		\checkmark	9.8	22.1	6.8	10.4	23.9	6.9
\checkmark	\checkmark		11.5	25.7	8.2	10.5	25.3	7.0
\checkmark	\checkmark	\checkmark	11.6	26.1	8.4	10.6	25.7	7.1

Visualized Comparsions (360Indoor)

- Some easily confused bed/sofa/table-like objects are labeled as bed.
- With L1, predicted bboxes are coarse and category-wrong.

Ground Truth

L1

Visualized Comparsions (360Indoor)

- Some easily confused bed/sofa/table-like objects are labeled as bed.
- With our CloU[†], predicted bboxes are more compact even though category-wrong.

Ground Truth

(Ours) CloU[†]

Visualized Comparsions (PANDORA)

- The cablinet is rotated with some angle, and lights are tiny.
- With L1, predicted box of the cablinet is corse with wrong angle, and lights are missing.

Ground Truth

Visualized Comparsions (PANDORA)

- The cablinet is rotated with some angle, and lights are tiny.
- With our CloU⁺, the cablinet is more tight with right angle, and lights are catched.

Ground Truth

(Ours) CloU⁺

- Paper: Sph2Pob: Boosting Object Detection on Spherical Images with Planar Oriented Boxes Methods
- Codes: https://github.com/AntXinyuan/sph2pob
- Contact:
 - Xinyuan Liu: liuxinyuan21s@ict.ac.cn
 - Hang Xu: <u>hxu@hdu.edu.cn</u>
 - Feng Dai: fdai@ict.ac.cn

Homepage

Tips: All codes/posters/slides can be available on our github page.