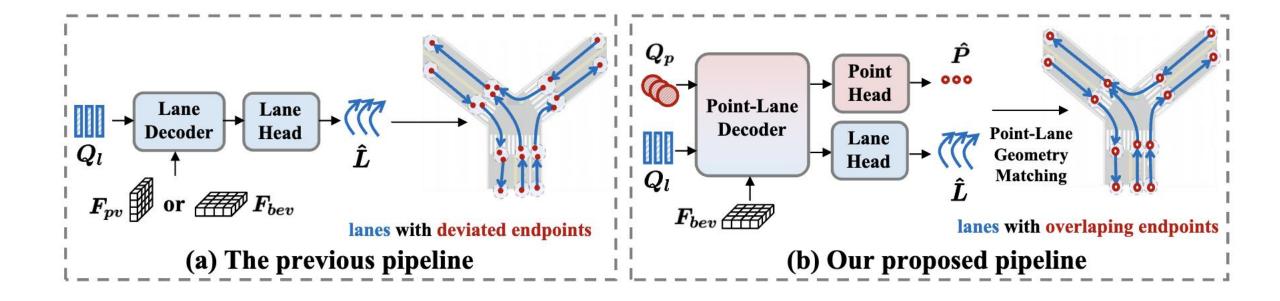


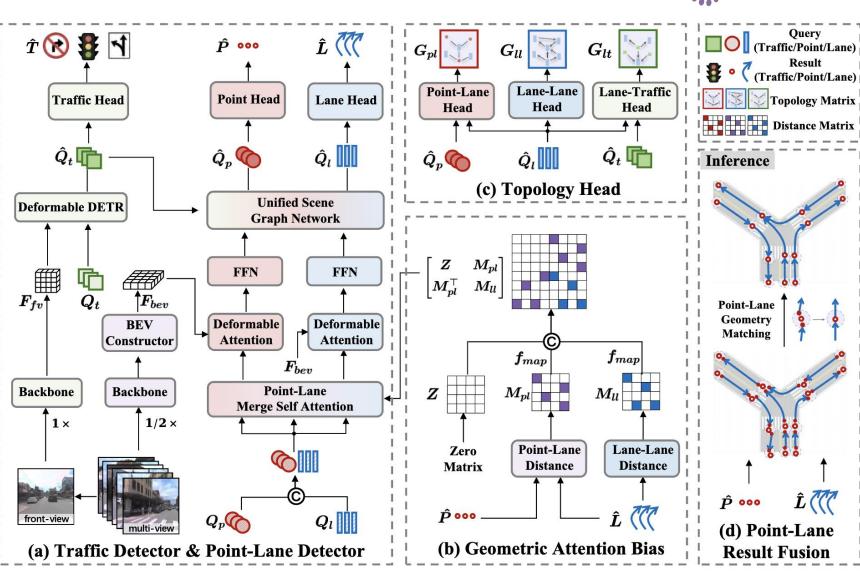
TopoPoint: Enhance Topology Reasoning via Endpoint Detection in Autonomous Driving

Yanping Fu^{1,2,3}, Xinyuan Liu^{1,2}, Tianyu Liu^{3,4}, Yike Ma¹, Yucheng Zhang¹, Feng Dai^{1*}


¹Institute of Computing Technology, Chinese Academy of Science; ²University of Chinese Academy of Sciences; ³Shanghai AI Lab; ⁴Shanghai Innovation Institute

fuyanping23s@ict.ac.cn

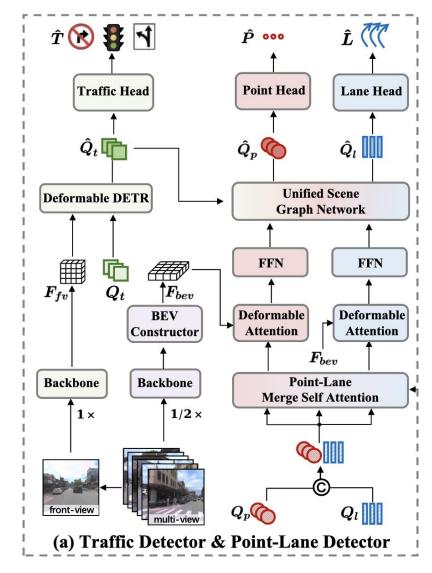
Motivation


- In the previous pipeline, lanes are predicted independently, which leads to obvious endpoint deviation.
- In our proposed pipeline, lane endpoints are explicitly modeled, and lanes with overlapping endpoints are obtained through point-lane geometry matching.

Overview

NEURAL INFORMATION PROCESSING SYSTEMS

- **■** Traffic Detector
- **■** Point-Lane Detector
- **■** Topology Head
- **■** Geometric Attention
- **■** Point-Lane Fusion
- The multi-view images are downsampled by a factor of 0.5, while keeping the front-view at its original resolution.
- All images are passed through ResNet50 with FPN. The features are then encoded into BEV representations using BevFormer encoder.



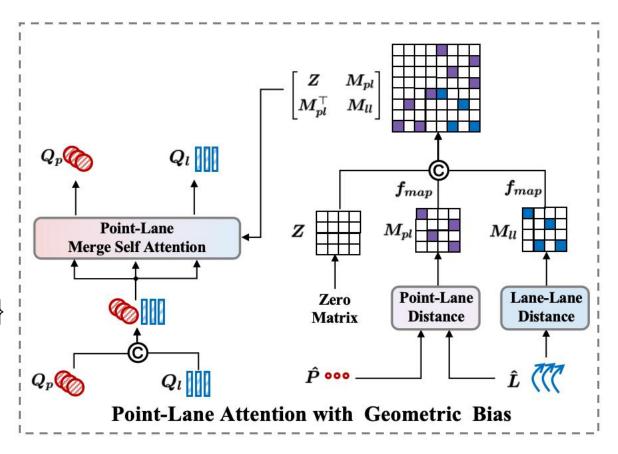
■ **Traffic Detector:** In the traffic detector, front-view features are directly processed by Deformable DETR to produce traffic query.

$$\hat{Q}_t = \text{DeformableDETR}(Q_t, F_{fv})$$

 $\hat{T} = \text{TrafficHead}(\hat{Q}_t)$

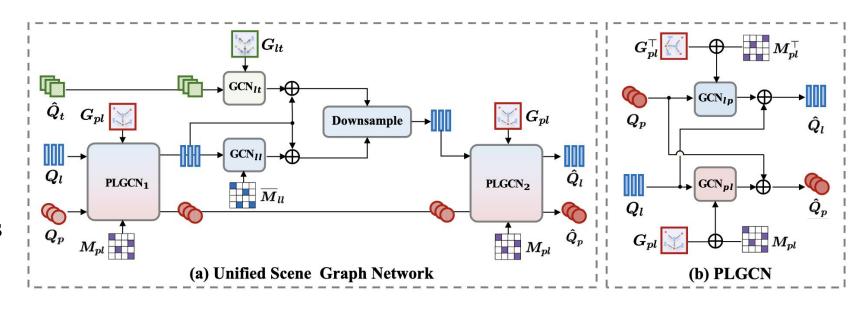
■ Point-Lane Detector: In the point-lane detector, point query and lane query interact via *Point-Lane Merge Self-Attention*, which computes geometric attention bias serving as an attention mask to enhance global information sharing. The resulting queries then perform cross-attention with BEV features. Then all queries are fed into *Unified Scene Graph Network*.

$$\begin{split} Q_{pl} &= \operatorname{Concat}\left(Q_{p}, Q_{l}\right) \\ Q_{p}, Q_{l} &= \operatorname{Point-LaneMergeSelfAttention}(Q_{pl}) \\ Q_{p}, Q_{l} &= \operatorname{LN}(\operatorname{DeformAttn}(Q_{p}, R_{p}, F_{bev})), \operatorname{LN}(\operatorname{DeformAttn}(Q_{l}, R_{l}, F_{bev})) \\ Q_{p}, Q_{l} &= \operatorname{LN}(\operatorname{FFN}(Q_{p})), \operatorname{LN}(\operatorname{FFN}(Q_{l})) \\ Q_{p}, Q_{l} &= \operatorname{UnifiedSceneGraphNetwork}(Q_{p}, Q_{l}, \hat{Q}_{t}) \\ \hat{P} &= \operatorname{PointHead}(\hat{Q}_{p}), \ \hat{L} = \operatorname{LaneHead}(\hat{Q}_{l}) \end{split}$$


■ **Point-Lane Attention:** The geometric attention bias is also incorporated into the point-lane merge self attention module to exchange information.

■ To incorporate the geometric relationships between points and lanes in the BEV space, we compute

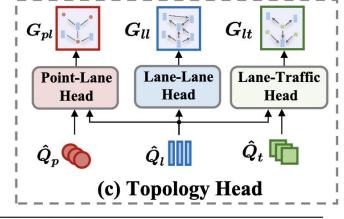
their pairwise geometric distances based on the predicted points and lanes from the previous decoder layer


■ To compute self-attention, we concatenate distance matrixes to form geometric attention bias, which is added to the attention weights computed from original quries.

$$\begin{split} Q_{pl} &= \operatorname{Concat}\left(Q_p, Q_l\right) \\ D_{ll} &= \left\{\sum |\hat{l}_i^e - \hat{l}_j^s| \left| i = 1, 2, \dots, N_p, j = 1, 2, \dots, N_l \right. \right\} \\ D_{pl} &= \left\{\operatorname{Min}\left(\sum |\hat{p}_i - \hat{l}_j^s|, \sum |\hat{p}_i - \hat{l}_j^e|\right) \left| i = 1, 2, \dots N_p, j = 1, 2, \dots N_l \right. \right\} \\ M_{pl} &= f_{map}(D_{pl}), \ M_{ll} = f_{map}(D_{ll}) \\ Q_p, Q_l &= \operatorname{Softmax}\left(\frac{Q_{pl} \cdot Q_{pl}^\top}{\sqrt{d}} + \begin{bmatrix} Z & M_{pl} \\ M_{pl}^\top & M_{ll} \end{bmatrix}\right) \cdot Q_{pl} \\ Q_p, Q_l &= \operatorname{LN}(Q_p), \operatorname{LN}(Q_p) \end{split}$$

NEURAL INFORMATION PROCESSING SYSTEMS

- Unified Scene Graph
 Network: Based on
 geometric attention bias
 and reasoned topology,
 lane & point queries are
 enhanced from the
 associated traffic elements
 & lanes & points by the
 unified scene graph
 network.
- **PLGCN:** The submodule is designed to facilitate bidirectional feature aggregation between point and lane based on their geometric relationships.



$$\begin{split} A_{pl} &= \lambda_1 G_{pl} + \lambda_2 M_{pl} \\ Q_p &= \text{GCN}_{pl} \left(Q_l, A_{pl}\right) + Q_p, \ Q_l = \text{GCN}_{lp}(Q_p, A_{pl}^\top) + Q_l \\ Q_p^1, Q_l^1 &= \text{PLGCN}_1(Q_p, Q_l, M_{pl}, G_{pl}) \\ Q_l^2 &= \text{Downsample} \left(\text{Concat} \left(\text{GCN}_{ll}(Q_l^1, \overline{M}_{ll}) + Q_l^1, \ \text{GCN}_{lt}(\hat{Q}_t, G_{lt}) + Q_l^1 \right) \right) \\ Q_p^3, Q_l^3 &= \text{PLGCN}_2(Q_p^1, Q_l^2, M_{pl}, G_{pl}) \\ \hat{Q}_p, \hat{Q}_l &= Q_p^3, Q_l^3 \end{split}$$

■ **Topology Head:** The queries are used for topology reasoning, and the topology is also used for query enhancement in scene graph.

```
\hat{G}_{pl} = \operatorname{Sigmoid}(\operatorname{MLP}(\hat{Q}_p) \cdot \operatorname{MLP}(\hat{Q}_l)^{\top}) \ \hat{G}_{ll} = \operatorname{Sigmoid}(\operatorname{MLP}(\hat{Q}_l) \cdot \operatorname{MLP}(\hat{Q}_l)^{\top}) \ \hat{G}_{lt} = \operatorname{Sigmoid}(\operatorname{MLP}(\hat{Q}_l) \cdot \operatorname{MLP}(\hat{Q}_t)^{\top})
```


■ PointLane Geometry Matching Algorithm:

During inference, predicted points and lanes are fused via Point-Lane Geometry Matching algorithm to refine lane endpoints and effectively mitigate the endpoint deviation problem.

Algorithm 1: Point-Lane Geometry Matching Algorithm

Input: Predicted points \hat{P}_{reg} , \hat{P}_{cls} ; predicted lanes \hat{L}_{reg} , \hat{L}_{cls} ; classification thresholds τ_p , τ_l ; geometry distance threshold δ .

Output: Refined lanes \hat{L}_{ref}

Step 1: High-Confidence Filtering

Filter points with high classification scores: $\hat{P}_{select} = \{\hat{P}_{reg}^i \mid \hat{P}_{cls}^i > \tau_p\}$

Filter lanes with high classification scores: $\hat{L}_{select} = \{\hat{L}_{reg}^j \mid \hat{L}_{cls}^j > \tau_l\}$

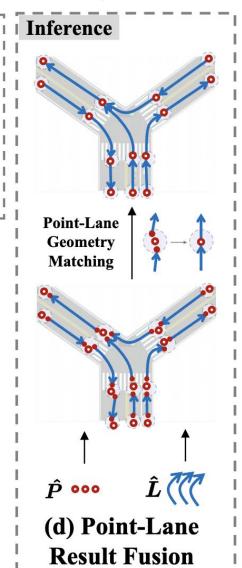
Step 2: Geometry-Based Matching and Refinement

foreach point $\hat{P}_i \in \hat{P}_{select}$ do

Initialize empty match set: $\mathcal{N}_i = \emptyset$;

foreach lane $\hat{L}_j \in \hat{L}_{select}$ do

if $distance(\hat{P}_i, \hat{L}_j^{endpoint}) < \delta$ then $Add \hat{L}_i$ to \mathcal{N}_i ;


if $\mathcal{N}_i \neq \emptyset$ then

Compute refined endpoint:

 $\hat{E}_i = \frac{1}{|\mathcal{N}_i|+1} \left(\hat{P}_i + \sum_{\hat{L}_j \in \mathcal{N}_i} \hat{L}_j^{endpoint} \right);$

Update endpoints of all $\hat{L}_j \in \mathcal{N}_i$ with \hat{E}_i ;

return \hat{L}_{ref} with refined endpoints

Experiments Setup

- **Dataset:** OpenLaneV2, which is constructed based on Argoverse2 and nuScenes. OpenLane-V2 is divided into two subsets: subset_A and subset_B, each containing 1,000 scenes captured at 2 Hz with multi-view images and corresponding annotations.
- **Metric:** We adopt the evaluation metrics defined by OpenLane-V2, including DETl, DETt, TOPll, and TOPlt, all of which are computed based on mean Average Precision (mAP)

$$OLS = \frac{1}{4} [DET_l + DET_t + \sqrt{TOP_{ll}} + \sqrt{TOP_{lt}}]$$

■ **Point Metric:** In addition, to evaluate the performance of endpoint detection, we define a custom metric DETp, which is computed as the average over match thresholds $T = \{1.0, 2.0, 3.0\}$ based on the point-wise Fréchet distance, as follows:

$$\mathrm{DET}_p = rac{1}{|\mathbb{T}|} \sum_{t \in \mathbb{T}} AP_t$$

Main Results

■ Comparison on OpenLane-v2 Benchmark: New SOTA results and more precise endpoints.

Data	Method	Conference	$\mathrm{DET}_l \uparrow$	$\mathrm{DET}_t \uparrow$	$TOP_{ll} \uparrow$	$TOP_{lt} \!\!\uparrow$	OLS↑	$DET_p \uparrow$
	STSU[13]	ICCV2021	12.7	43.0	2.9	19.8	29.3	-
	VectorMapNet[10]	ICML2023	11.1	41.7	2.7	9.2	24.9	-
	MapTR[48]	ICLR2023	17.7	43.5	5.9	15.1	31.0	-
	TopoNet[26]	Arxiv2023	28.6	48.6	10.9	23.8	39.8	43.8
subset_A	TopoMLP[29]	ICLR2024	28.3	49.5	21.6	26.9	44.1	43.4
	TopoLogic[15]	NeurIPS2024	29.9	47.2	23.9	25.4	44.1	45.2
	TopoFormer*[31]	CVPR2025	34.7	48.2	24.1	29.5	46.3	-
	TopoPoint (Ours)	-	31.4	55.3	28.7	30.0	48.8	52.6
	STSU[13]	ICCV2021	8.2	43.9	-	-	-	-
	VectorMapNet[10]	ICML2023	3.5	49.1	x x	-	-	-
	MapTR[48]	ICLR2023	15.2	54.0	-	-	-	-
	TopoNet[26]	Arxiv2023	24.3	55.0	6.7	16.7	36.8	38.5
subset_B	TopoMLP[29]	ICLR2024	26.6	58.3	21.0	19.8	43.8	39.6
	TopoLogic[15]	NeurIPS2024	25.9	54.7	21.6	17.9	42.3	39.2
	TopoFormer*[31]	CVPR2025	34.8	58.9	23.2	23.3	47.5	-
	TopoPoint (Ours)	-	31.2	60.2	28.3	27.1	49.2	45.1

Ablation Studies

■ Impact of each module:

Module	$ \text{DET}_l\uparrow$	$\overline{\mathrm{DET}_t}\uparrow$	$TOP_{ll} \uparrow$	$TOP_{lt} \uparrow$	OLS†	$\overline{\mathrm{DET}_{p}\!\!\uparrow}$
Baseline	29.2	46.8	23.4	24.3	43.4	44.5
+ FVScale	29.4	53.8	23.8	27.0	46.0	44.8
+ PLMSA	30.2	54.8	27.2	28.5	47.6	49.8
+ PLGCN	30.8	55.3	28.0	29.2	48.3	51.8
+ PLGM	31.4	55.3	28.7	30.0	48.8	52.6

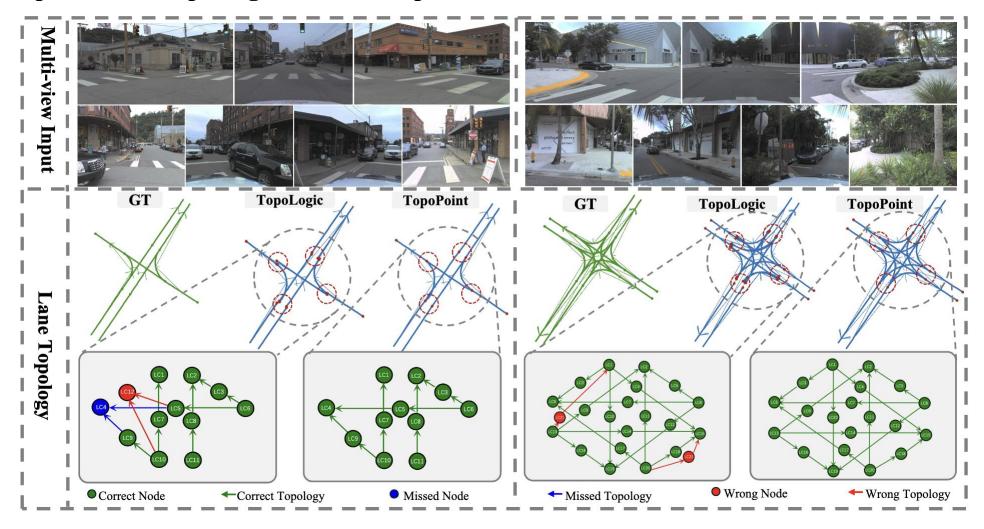
■ Effect of different GCNs:

Module	$ \mathrm{DET}_l\uparrow$	$\mathrm{DET}_t \uparrow$	$TOP_{ll} \uparrow$	$TOP_{lt} \uparrow$	OLS†	$DET_p \uparrow$
w/o GCN	28.9	53.9	25.6	26.4	46.2	48.6
$+ GCN_{ll}$	29.8	54.2	26.9	27.1	47.0	49.8
$+ GCN_{lt}$	30.6	54.5	27.4	28.8	47.8	50.5
+ PLGCN ₁	30.9	55.0	28.2	29.5	48.3	51.9
+ PLGCN ₂	31.4	55.3	28.7	30.0	48.8	52.6

Ablation Studies

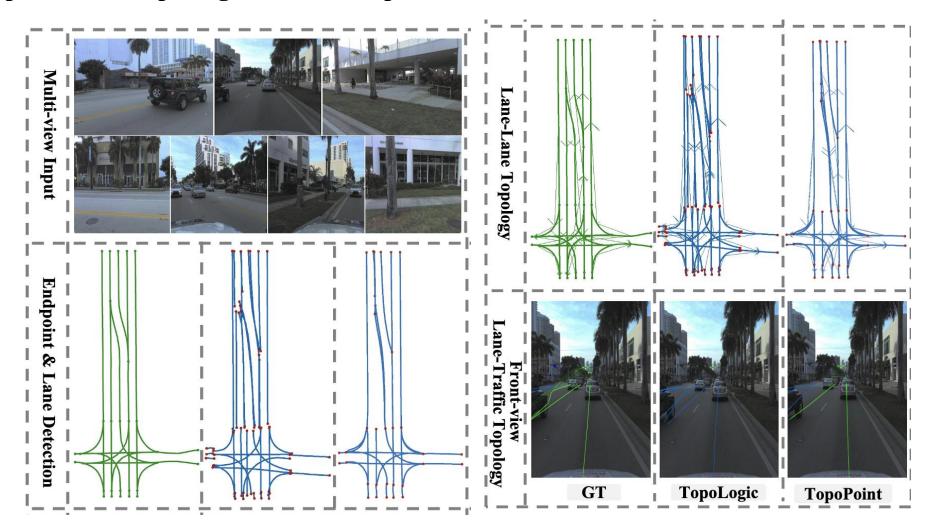
■ Image scales set up:

$\overline{S_{fv}}$	S_{mv}	$ \mathrm{DET}_l\uparrow$	$\mathrm{DET}_t \uparrow$	$TOP_{ll} \uparrow$	$TOP_{lt} \uparrow$	OLS†	$\overline{\mathrm{DET}_{p}}\uparrow$
0.5	0.5	31.2	48.6	28.5	28.4	46.6	52.3
0.5	1.0	30.5	48.3	28.0	27.9	46.1	
		31.4		28.7	30.0	48.8	52.6
1.0	1.0	30.8	54.7	28.3	28.9	48.1	51.8


■ Effect of point and lane query numbers:

$\overline{N_p}$ N_l	$ \mathrm{DET}_l \uparrow$	$\mathrm{DET}_t \uparrow$	$TOP_{ll} \uparrow$	$TOP_{lt} \uparrow$	OLS↑	$\overline{\mathrm{DET}_{p}}\uparrow$
100 200	29.5	54.3	25.6	27.0	46.5	49.7
200 200		53.7	27.4	28.2	47.5	51.8
200 300	31.4	55.3	28.7	30.0	48.8	52.6
300 300	30.8	54.6	28.2	29.8	48.3	51.4

Qualitative Analysis


■ Comparison of TopoLogic and our TopoPoint:

Qualitative Analysis

■ Comparison of TopoLogic and our TopoPoint:

THANK YOU!